

Profesor Responsable: José María Moratal Mascarell.

2019

EJERCICIOS. Temas 7_8: Quim. de Coordinación y Generalidades del bloque d

- 1.- Formula o nombra, según corresponda, los siguientes complejos: [Nota: bipy = bipiridina]
 - a) bromuro de diclorobis(etano-1,2-diamina)platino(IV)
 - b) hidroxotetranitrito-N-nitrosilrutenato(II) de potasio
 - c) nitrato de bis(bipiridina)ditiocianato-S-rutenio(IV)
 - d) anión (bipy)tetraclororutenato(III)
 - e) [Pt(NH₃)₃Cl₃]Cl
 - f) Na₃[CoCl₃F₃]
 - g) $[Pd(NH_3)_4][PtCl_4]$
 - h) $[Co(en)_3][Cr(C_2O_4)_3]$
 - i) $[(NH_3)_4Co(NH_2)(OH)Co(NH_3)_4](SO_4)_2$
- 2.- Dibuja todos los isómeros geométricos y ópticos del complejo [PtCl₂(NO₂)₂(NH₃)₂].
- 3.- Explica las diferencias en los valores de Δ_0 para los siguientes iones complejos de cromo:

complejo	[CrF ₆] ³⁻	$[Cr(H_2O)_6]^{3+}$	[CrF ₆] ²⁻	[Cr(CN) ₆] ³⁻
$\Delta_0 \text{ (cm}^{-1})$	15000	17400	22000	26600

- **4.-** Se han registrado los espectros electrónicos de disoluciones de los acuoiones $[Fe(H_2O)_6]^{2+}$ y $[Ni(H_2O)_6]^{2+}$. Se observa que ambos espectros difieren en el número de bandas de absorción, presentando uno de ellos sólo una banda y el otro 3 bandas. Explica a qué acuoión corresponde el espectro de 1 banda y a cúal el de 3.
- 5.- El compuesto $[Fe(H_2O)_6](ClO_4)_2$ tiene un momento magnético efectivo $\mu_{ef}=5,11$ MB (B.N. Figgis et al, *Prog. Inorg. Chem.*, 6, p.177, 1964). El espectro electrónico de una disolución acuosa de $[Fe(H_2O)_6]^{2+}$ presenta una banda distorsionada con máximo de absorción a $\lambda=1060$ nm.

Datos: número atómico del hierro, Z(Fe) = 26; $N_A = 6,022 \times 10^{23} \text{ mol}^{-1}$; $h = 6,63 \cdot 10^{-34} \text{ J} \cdot \text{s}$; $c = 3 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$; $1 \text{ nm} = 10^{-9} \text{ m}$.

- a) Escribe la configuración electrónica de la especie compleja $[Fe(H_2O)_6]^{2+}$, justificando la respuesta
- **b**) Determina el valor de Δ_0 de $[Fe(H_2O)_6]^{2+}$ en cm⁻¹ y en kJ·mol⁻¹.
- c) Calcula la energía de estabilización de campo cristalino, EECC, de [Fe(H₂O)₆]²⁺ en kJ·mol⁻¹.
- d) i) *Explica* si en el complejo $[Fe(H_2O)_6](ClO_4)_2$, cabe esperar contribución orbital al momento magnético. ii) Calcula el valor del momento magnético de spin-sólo, μ_{ss} , del citado complejo. iii) Compara el valor calculado de μ_{ss} , con el valor experimental, μ_{ef} = 5,11 MB justificando si cabría esperar alguna desviación entre ambos valores

- **6.-** El complejo tetracianoniquelato(II) de potasio es diamagnético. Justifica cuál es la estructura más probable de la especie compleja.
- **7.-** El complejo [NiCl₂(PPh₃)₂] es paramagnético, mientras que el análogo de paladio, [PdCl₂(PPh₃)₂], es diamagnético. a) Predecir el número de isómeros de cada compuesto; b) escribe la configuración electrónica del complejo [NiCl₂(PPh₃)₂]. (**Nota**: PPh₃ es el ligando trifenilfosfina)
- **8.-** A partir de los valores de los momentos magnéticos experimentales, μ_{ef} , a temperatura ambiente, determina el estado de oxidación del ión metálico y el valor de \mathbf{x} en los siguientes complejos:

complejo	[VCl _x (bipy)]	$K_{\mathbf{x}}[V(ox)_3]$	$K_{\mathbf{x}}[Mn(CN)_6]$
μ _{ef} (MB)	1,77	2,80	3,94

Nota: se supone que la contribución orbital al momento magnético es despreciable. (bipy <u>=</u> bipiridina)

- **9.-** Escribe la configuración electrónica, en estado fundamental, de las siguientes especies: Cr, Cr⁺, Cu, Cu⁺, Mn, Mn⁺.
- **10.-** Ordena, razonadamente, las siguientes especies por orden creciente de tamaño: Nb, Cr, Fe²⁺, V, Mn, Fe³⁺, Ta.
- **11.-** Considera los siguientes metales: Ti, V, Cr, Mn, Fe, Co, Ni y Cu. Utiliza la tabla de potenciales redox para responder, razonadamente, a las cuestiones siguientes:
- a) ¿cuáles de estos metales deberían ser atacados por los ácidos minerales?
- b) ¿qué acuoión se formará en cada caso en atmósfera exenta de O₂? ¿y en presencia de aire? **Nota:** no considerar posibles efectos de pasivado del metal.

Valores de E°(V):	$[M^{3+}(ac)/M^{2+}(ac)]$	$[M^{3+}(ac)/M(s)]$	[M ²⁺ (ac)/M(s)]
Ti	-0,9	-1,3	-1,6
V	-0,26	-0,86	-1,2
Cr	-0,41	-0,74	-0,91
Mn	+1,60	-0,28	-1,18
Fe	+0,77	-0,04	-0,44
Со	+1,93	+0,40	-0,28
Ni	+4,2 (calc)		-0,25
Cu	+4,6 (calc)		+0,34

Ejercicios adicionales:

- 12.- Formula o nombra, según corresponda, los siguientes complejos: [Nota: bipy = bipiridina]
 - a) cloruro de hexaamminoplatino(IV)
 - b) hexacianoferrato(III) de potasio
 - c) $[Cr(H_2O)_6]SO_4$
 - d) $[CrCl_3(NH_3)_3]$
 - e) $[Cr(bipy)_3]Br_2$
 - f) [Co(NH₃)₆][CuCl₅]
 - g) cloruro de pentaamminocobalto(III)-µ-amido-acuotetraamminocobalto(III)

- 13.- Dibuja los isómeros geométricos y ópticos del ión complejo [CoCl₂(en)₂]⁺.
- **14.-** De los iones complejos anión hexacianoferrato(III) y anión tetracloroferrato(III) justifica cuál será probablemente de spin alto y cuál de spin bajo
- 15.- De las siguientes parejas de especies complejas, razona cuál tiene mayor valor de Δ .
 - a) $[Fe(CN)_6]^{4-}$, $[Fe(CN)_6]^{3-}$
 - b) $[Ni(H_2O)_6]^{2+}$, $[Ni(en)_3]^{2+}$
 - c) [MnF₆]²⁻, [ReF₆]²⁻
 - d) $[Co(en)_3]^{3+}$, $[Rh(en)_3]^{3+}$
 - e) $[Co(NH_3)_6]^{2+}$, $[Co(NH_3)_4]^{2+}$
- **16.-** El compuesto [IrCl(CO)(PPh₃)₂] se conoce como complejo de Vaska y se utiliza en estudios de procesos de adición oxidativa. ¿Cuál es el número de oxidación formal del Iridio? (**nota**: PPh₃ es el ligando trifenilfosfina)
- 17.- A temperatura ambiente, el valor determinado del momento magnético para el complejo $[Cr(en)_3]Br_2$ es μ_{ef} = 4,75 MB (magnetones de Bohr). ¿El complejo es de spin alto o bajo?
- **18.-** Teniendo en cuenta la posición del ligando cianuro en la serie espectroquímica, ¿cuántos electrones desapareados cabe esperar en la especie compleja $[Fe(CN)_6]^{3-}$?
- **19.-** Escribe las configuraciones electrónicas de los siguientes complejos: $[Cr(CN)_6]^{3-}$, $[Fe(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{2+}$, $[CoCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$, $[NiCl_2(PPh_3)_2]$.
- **20.-** Se han registrado los espectros electrónicos de disoluciones, con la misma concentración, de los complejos [CoCl₄]²⁻ y [Co(H₂O)₆]²⁺. Se observa que para la absorción más intensa (d-d), ambos espectros difieren en un factor de casi 100. ¿A qué complejo corresponde el espectro con mayor absorción?
- **21.-** Responde razonadamente a las siguientes cuestiones:
- a) ¿por qué la 2ª energía de ionización del cobre es mayor de lo esperado?
- b) ¿por qué la 3ª energía de ionización del Mn es mayor de lo esperado y por el contrario la del hierro es menor de lo esperado?
- c) ¿por qué la entalpía de atomización en el grupo 8 sigue la secuencia Fe < Ru < Os?